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2-D Modeling of the Behavior of an Adhesive in an
Assembly Using a Non-Associated Elasto-Visco-Plastic
Model

R. Créac’hcadec and J. Y. Cognard
Laboratoire Brestois de Mécanique et des Systèmes, ENSIETA/
Université de Brest/ENIB ENSIETA, Brest, France

This paper presents a contribution to the development of a numerical model for an
adhesive in an assembly, starting from a large data base of experimental results in
the case of radial monotonic loadings. The experimental results were obtained with
a modified Arcan-type fixture using specific geometries which strongly limit the
influence of edge effects in order to obtain reliable information about the non-
linear behavior of the adhesive. These results underline that deformations in the
adhesive are much larger in shear than in peel. Thus, a non-associated 2D model,
with a specific yield function, was proposed to represent accurately the experimen-
tal observations. As the stress state is not uniform in the adhesive joint for the pro-
posed Arcan-type fixture, inverse identification techniques using non-linear finite
element simulations were used. Firstly, for a given strain rate, an elasto-plastic
model was proposed and its behavior was analyzed through different numerical
examples. Secondly, an extension to elasto-visco-plastic models was proposed for
a wide range of deformation rates under tensile-shear loading tests. Results of
numerical examples and comparisons with experimental data are presented using
joint-type elements (or interface elements) which allow one to limit the numerical
cost in the case of bonded structures with low edge effects.
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1. INTRODUCTION

Adhesively bonded assemblies are widely used in different industries,
but the prediction of the behavior of these bonded joints is still approx-
imate due mainly to large edge effects in the adhesive joint [1]. In
order to allow an optimization of industrial applications, mainly two
points have to be analyzed: firstly, reliable models of the adhesive
behavior have to be developed, and secondly, the use of geometries
which limit the influence of edge effects can increase the transmitted
load of industrial-type adhesively bonded joints. This paper presents
the development of a 2D model in order to represent the non-linear
behavior of an adhesive film (epoxy resin HuntsmanTM, Basel,
Switzerland, Araldite1 420 A=B [2]) starting from a large data base
of experimental results obtained by a modified Arcan fixture [3]. This
fixture was designed to study the behavior of thin adhesive films up to
failure in an assembly, for compression or tension to be combined with
shear loads. The experimental data obtained point out viscous phe-
nomena and dissymmetric behavior between traction and compression
of the adhesive with respect to the loading conditions (tension=
compression-shear). Moreover, the results underline that deforma-
tions in the adhesive are much larger in shear than in peel. It is impor-
tant to notice that standard tests such as the thick adherend shear test
(TAST) [4,5] or single lap shear (SLS) [6–8] specimens mostly provide
information for shear loadings, not for tensile-shear loadings. More-
over, such tests are characterized with a complex stress state in the
adhesive joint (especially for the SLS joint) and large edge effects
which make the result analysis quite difficult [9]. In the case of the
proposed Arcan–type test, specific geometries which strongly limit
the influence of edge effects allow one to obtain reliable information
about the non-linear behavior of the adhesive [9]. But, for a given ten-
sile-shear loading, the stress state is not uniform in the adhesive [3];
thus, inverse identification techniques using non-linear finite element
simulations have to be used in order to identify the parameters of the
numerical model.

To represent the behavior of the adhesive accurately different
strategies can be used, such as taking into account the influence of
the hydrostatic pressure [10,11] and using non-associate elasto-
visco-plastic models [12,13]. As far as 2D non-linear modeling is
concerned, a specific yield function can be easily used [14,15]. More-
over, this technique is well suited to be combined with joint-type
elements (or interface elements) which allow one to limit the numeri-
cal cost with respect to solid elements in the case of bonded structures
with low edge effects. This type of model can be justified when the
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thickness of the joint is not too large with respect to the structure
dimensions [16]. The possibilities of such models have been already
evaluated mainly in the case of pure shear loadings [15]. Moreover,
different studies have been proposed to model strain rate effects for
the adhesive [17–19].

After recalling the main points of the behavior of the studied adhe-
sive in an assembly for a given strain rate, the development of a 2D
non-associated model with specific yield function and under elasto-
plastic assumption is presented in the case of radial tensile-shear load-
ings. The identification of the model parameters was done using a
combination of an optimization software (MATLAB Mathworks Inc.,
Natick, MA, USA) with non-linear finite element computations rea-
lized with CAST3M code (Saclay, CEA, France) [20]. A single lap
shear-type test specimen using beaks in order to strongly limit the
edge effects was analysed in order to show the response of the model
under quite complex stress distribution in the adhesive. Comparisons
with experimental results were also carried out. In the last part, an
extension to elasto-visco-plastic models is proposed taking into
account a wide range of deformation rates under tensile-shear tests.

2. PRESENTATION OF THE COMPLETE IDENTIFICATION
PROCEDURE

2.1. Experimental Details

In order to study the behavior of the adhesive as a function of the
normal stress component, a modified Arcan fixture was developed [3],
which enables compression or tension to be combined with shear loads
(Fig. 1a–b). Numerical simulations in linear elasticity, for bi-material
structures, show that the use of a special geometry (Fig. 1c) for the
substrate (a beak close to the adhesive joint) makes it possible to limit
strongly the contribution of the singularities due to edge effects [21]. A
specimen with rectangular section was proposed taking into account
the problems involved in machining [3]. This experimental Arcan
fixture associated with non-contact extensometry and optimization
techniques allows one to analyze, for radial loadings, the non-linear
behavior of an adhesive in an assembly [3]. The experimental data
from Arcan tension-shear tests are defined on load-displacement dia-
grams (Fig. 2). DN and DT represent the relative displacements of
both ends of the adhesive joint, respectively, in the normal and tan-
gential directions of the middle plane of the adhesive [3]. They are
determined at the middle of the joint length and they are considered
as an approximation of the relative displacements of the entire bond
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length because the rigidities of the metallic substrates are large with
respect to the adhesive one. FN and FT represent, respectively, the
components of the applied load in the normal and tangential direction
of the joint.

Different experimental tests have been done using epoxy resin
Huntsman, Araldite 420 A=B [2], with an adhesive thickness of
0.4mm, for monotonic radial loadings in order to characterize the
non-linear mechanical behavior of the adhesive under tensile-shear
loadings for a large range of strain rates. Figure 2 presents results
for three loading conditions: pure shear tests (Fig. 2a, c¼ 90�, Fig. 1b),
pure tensile tests (Fig. 2b, c¼ 0�), and tensile-shear tests (Fig. 2c–d,
c¼ 45�). Moreover, four crosshead displacement rates of the tensile
testing machine were used to characterize the behavior of the adhe-
sive: V1¼ 0.01mm=min, V2¼ 0.05mm=min, V3¼ 0.5mm=min, and
V4¼ 10mm=min. A wide range of deformation rates is considered in
order to analyze correctly the viscous effects [22]. On one hand, an
important ratio, DT=DN, between the relative displacement in the
normal (DN) and tangential (DT) directions is observed: this ratio
can reach a range of about ten for tensile-shear tests at failure. On
the other hand, an increase of the ‘‘yield stress’’ is observed as the
strain rate increases. These viscous phenomena seem to be quite
similar considering the variation of the loading direction (angle c ).
Other experimental results can be found for relaxation type or cyclic
loadings in [3].

FIGURE 1 The modified Arcan fixture. (a) Presentation of a tensile-shear
test, (b) principle of the Arcan Fixture, and (c) geometry of the bonded
specimens.
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2.2. Properties of Joint-Type Elements

In order to limit the numerical cost of non-linear simulations with
respect to solid elements in the case of bonded structures with low
edge effects, joint-type elements (or interface elements) can be used
[16]. The possibilities of such elements have been already evaluated
mainly in the case of pure shear loadings of adhesive joints [15]. The
constitutive law for such a model is a relation between the interface
tractions, T, and the so-called displacement jump, ½u�, across the joint
(relative displacement between Cþ and C�described in Fig. 3b). With
the following relations

½u� ¼ uðCþÞ � uðC�Þ ¼ un � nþ us � s ð1Þ

T ¼ tn � nþ ts � s ð2Þ

FIGURE 2 Experimental results from Arcan tension-shear tests for different
radial monotonic loadings and for different displacement rates (V1¼
0.01mm=min, V2¼ 0.05mm=min, V3¼ 0.5mm=min, and V4¼ 10mm=min).
(a) Behavior in the tangential direction for pure shear tests [15] (c¼ 90�,
Fig. 1), (b) behavior in the normal direction for pure tensile tests (c¼ 0�,
Fig. 1), (c) behavior in the tangential direction for tension-shear tests
(c¼ 45�, Fig. 1), and (d) behavior in the normal direction for tension-shear
tests (c¼ 45�, Fig. 1).
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one can define the normal and tangential relative displacements (un,
us) and the normal and shear components (tn, ts) of the local interface
traction for the interface element. Variables un, us, tn, ts, n, and s are
defined in Fig. 3. Using the previous notations, the elastic behavior
is described as:

T ¼ tn
ts

� �
¼ kn 0

0 ks

� �
un

us

� �
¼ Ke½u�; ð3Þ

where Ke is the elastic stiffness matrix, kn is the tensile modulus, and
ks is the shear modulus whose dimension is [F=L3] (F and L denote
force and length, respectively). It has been shown, under elastic
assumption, that 2D and 3D finite element simulations with conti-
nuum elements and 2D finite element simulation with joint-type
formulation give similar results [15].

2.3. Inverse Problem to be Solved

As numerical simulations performed under elasticity assumptions
have pointed out that the stress distribution in the adhesive is not uni-
form along the adhesive joint for the modified Arcan test [3], inverse
techniques have to be used. In fact, an inverse problem can be seen
as a means to determine a parameter denoted by ‘‘m,’’ inaccessible
by an experimental device, thanks to the measure of another para-
meter noted by ‘‘d,’’ directly accessible experimentally, knowing the
mathematical model of the direct problem defining explicitly the value
d from the value m [23]. In order to obtain the material parameters of
the adhesive model starting from experimental measurements, this
method often couples an analytical model [24] or a finite element
model [25] to an optimization algorithm [26].

For the present problem and to determine the best values of the
parameters for the model proposed in Section 3, different points have
to be taken into account when solving the inverse problem due to the
non-linear behavior of the adhesive. On one hand, it has been shown

FIGURE 3 Joint model for a 2D interface [15]. (a) Geometrical modeling and
(b) displacements and interface tractions.
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that the stress distribution in the adhesive under the elastic behavior
assumption depends on the elastic properties of the adhesive for a
given material substrate [25]. On the other hand, the adhesive strain
rate is not constant during an experimental test, contrary to the given
constant displacement rate of the crosshead of the tensile machine.
The experimental results give the time evolution of the relative displa-
cements (DT, DN) and of the components of the load (FT, FN) as a
function of time which are the input data for the inverse problem
(Fig. 4). Figure 5 presents the time evolution of FT, FN, DT, and
DN for tensile-shear (c¼ 45�) tests at different displacement rates of
the crosshead. Similar results are observed for pure tensile tests and
pure shear tests. Thus, accurate mechanical models of the bonded
specimen with quite refined space and time discretizations have to
be used in order to obtain accurate numerical results.

2.4. Scheme of the Identification Problem

Figure 6 presents the 2D mechanical model used for the inverse identifi-
cation procedure using the finite element code CAST3M. It can be noted
that considering adequate boundary conditions, the computation can be
done on only half of the specimen. For the complete model used, the load
was applied on the upper and lower straight lines of the substrates con-
sidering a uniform stress distribution and using some constraints in
order to represent the high rigidity of the Arcan support. The relative dis-
placement of the adhesive was extracted at each step of the computation
at points P1 and P2 (Fig. 6) in the normal and tangential directions [3].
The experimental displacements were obtained close to those points with
a non-contact extensometry technique [3]. Therefore, at each step of the
non-linear finite element problem, the numerical values of the applied
load and of the relative displacement are known. One can define the error
between the experimental and numerical load-displacement curves using
a quadratic function which has to be minimized. The parameters of the

FIGURE 4 Scheme of the inverse problem for the identification of the
parameters of the postulated adhesive model.
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non-linear model of the adhesive have to be optimized using the experi-
mental load-displacement curves. For the simulations, the aluminium
substrates were assumed to have an elastic behavior (Young’s modulus
of 67GPa and Poisson’s ratio of 0.34). The finite element model was
coupled to the optimization software MATLAB that generates a new
set of adhesive mechanical parameters at each iteration of the optimiza-
tion. The simplex algorithm used [27] gives good results.

FIGURE 6 Mechanical model used for the inverse identification technique.

FIGURE 5 Evolution of the input data as a function of time for the inverse
identification for Arcan tensile-shear tests (c¼ 45�). (a) Evolution of the load
(for tensile-shear tests F¼FT¼FN), (b) evolution of the tangential displace-
ment, DT, and (c) evolution of the normal displacement, DN.
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3. NON-ASSOCIATED ELASTO-PLASTIC MODEL

The combination of an elasto-plastic model with isotropic hardening
and a specific yield function with joint-type elements allowed the
accurate representation of the experimental behavior of an adhesive
joint for radial loadings (especially for tensile or shear loadings) [15].
Thus, in the following, in order to take into account the differences
between the deformations in the normal and tangential directions of
the adhesive (Fig. 2), a non-associated approach was used [28].

3.1. Equations of the Elasto-Plastic Model

Following the framework of continuum thermodynamics [29], asso-
ciated models use the normal direction to the yield surface in order
to define the evolution laws and non-associated formulations introduce
another function to describe the flow rules. In 2D problems, the yield
surface is accurately represented with an elliptic function, f, defined
from the interface tractions [14,15]. Another elliptic function, q, was
used to describe the important ratio between the relative displace-
ments in the normal and tangential directions.

The additivity of elastic ½u�e and plastic ½u�p (i.e., irreversible) rela-
tive displacements was assumed. Thus, denoting by q the density
and by p the plastic cumulated displacement (internal variable asso-
ciated with the isotropic hardening), the free energy, qw , is defined as:

qw ¼ 1

2
traceðKe½u�e � ½u�eÞ þ hðpÞ: ð4Þ

The state equations were obtained from the free energy:

T ¼ q
@w

@½u�e ¼ Ke½u�e ð5Þ

R ¼ q
@w
@p

¼ h0ðpÞ ¼ Ri þ Ap: ð6Þ

R is an associated variable to p and h0(p) is a material function related
to the isotropic hardening which can be proposed in a quite simple
form for the studied adhesive and for monotonic loadings. Ri and A
are characteristic parameters of the material.

The yield surface was defined with an elliptic function taking into
account the differences between traction and compression (using char-
acteristic parameters of the material: aþ, a�, and b) [15]:

f ¼ jjTjj � R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
htni2þ
a2
þ

þ htni2�
a2
�

þ t2s
b2

s
� R: ð7Þ
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hxiþ and hxi� are, respectively, the positive and negative part of the
real x.

In order to introduce the non-associated model, an elliptic flow rule
function, defined from parameters c and d, was introduced:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2n
c2

þ t2s
d2

r
� R: ð8Þ

Thus, the evolution laws were defined as:

½ _uu�p ¼ _kk
@q

@T
ð9Þ

� _pp ¼ _kk
@q

@R
¼ � _kk: ð10Þ

k is the so-called inelastic multiplier. Therefore, in the case of an
elasto-plastic behavior, for given components (tn, ts) of the stress
vector, the direction of the inelastic displacement was defined using
the normal vector at a given point of the flow rule function and was
directly obtained using Eq. (9).

In order to propose an accurate model which describes the differ-
ences between tensile-shear and compression-shear loadings, it may
be necessary to introduce the important ratio for the displacements
at failure between the normal and tangential directions in the defini-
tion of the flow rule function as well as in the yield surface definition.
But it was not introduced herein, as mainly tensile-shear loadings
have been analyzed in order to validate the possibilities of the
proposed non-associated model.

Moreover, the following relation is obtained [29]:

k ¼
Z s

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½ _uu�pÞT � ð½ _uu�pÞ

q
ds0 ¼ p; ð11Þ

where s denotes time and subscript T means transposition.
It is important to notice that the different parameters are not

independent and, thus, parameters b and d can be chosen equal to 1.
Therefore, this non-associated elasto-plastic model is defined using
seven parameters (Table 1).

The implementation of this model in the finite element code
CAST3M was realized using a return mapping-type algorithm [30].
A presentation of such a numerical integration approach can be found
in [15] in the case of the associated model.
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3.2. Results for Tensile-Shear Radial Monotonic Loadings

The inverse identification technique was realized using, simulta-
neously, all the experimental database as the model must represent
the behavior of the adhesive for the different monotonic radial load-
ings. Experimental results for c¼ 0�, 30�, 37.5�, 45�, and 90�, obtained
for a displacement rate of 0.5mm=min, were used (various effects are
observed between 0� and 45�). Table 1 gives the values of material
parameters of the non-associated elasto-plastic model, obtained with
the inverse identification method.

Figure 7 presents, for the different radial loadings, comparisons
between experimental data and results of finite element simulations
using the adhesive parameters defined in Table 1. Figure 7a shows
the yield surface and the so-called flow function which were obtained.
The experimental results (denoted by ‘‘Experimental’’) and the numer-
ical results obtained by the finite element simulations (denoted by
‘‘FEA’’) are plotted on the same load-displacement graph in Figs. 7b
and 7c. The results of the proposed model are in good agreement with
the experimental data. The chosen flow rule function allows the accu-
rate representation of the large ratio between the inelastic displace-
ments in the normal and tangential directions.

Figure 8 shows the results for the tensile-shear test at c¼ 45�,
which is the most difficult test to represent. Figures 8a and 8b present
the experimental and numerical load-displacement curves. Figures 8c
and 8d represent the evolution of the adhesive shear and peel stresses
along half of the overlap (segment [OA] defined in Fig. 6) for increas-
ing stages of loading (the different steps: i, j, k, and l are defined on
Figs. 8a and 8b). After the known non-uniform stress distribution in
the elastic domain (i), the stresses became nearly uniform for large
inelastic displacements (before failure) (l). In the transition part
(j–k), large stress re-distributions are observed associated with the

TABLE 1 Material Parameters of the Adhesive
Non-Associated Elasto-Plastic Model

Parameters Values

kn (N=mm3) 5575
ks (N=mm3) 1015
aþ 2.05
a� 4
c 3.3
Ri(MPa) 22
A (N=mm3) 14
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development of plasticity in the adhesive. Nearly the same evolution of
the stress distribution in the adhesive was observed for the different
radial loadings.

3.3. Validation Example: A Simple Lap Shear
Specimen with Beaks

In order to validate the possibilities of the proposed model in the case
of bonded structures with low edge effects, an example with more com-
plex stress distribution is presented. A simple lap shear-type specimen
with thick substrates and beaks was designed to analyze the influence
of different parameters [31]. The substrates were machined with the
greatest care and a precise positioning of the substrates was obtained.
Moreover, the thickness of the bondline was controlled during the

FIGURE 7 Comparison between experimental (‘‘Experimental’’ in graphs)
and finite element analysis (‘‘FEA’’ in graphs) Arcan results for different radial
loadings (c¼ 0�, 30�, 37.5�, 45�, 90�). (a) Identified yield surface and flow law,
(b) adhesive behavior in the normal direction, and (c) adhesive behavior in the
tangential direction.
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bonding process (Fig. 9a). Measurements were taken in order to verify
the behavior of the specimen during the fixing and loading phases
(Fig. 9c). The main dimensions of the bonded specimen are: d1¼
66mm, d2¼ 325mm, d3¼ 56mm, d4¼ 20mm, d5¼ 40mm, and d6¼
20mm (Figs. 9d and 9e). The complete analysis of this experimental
test requires comparison between experimental and numerical results.
The finite element model takes into account the beaks, and the adhe-
sive was meshed with nearly 400 six-node interface elements. The
computation can be made in 2D using half of the model by applying
adequate boundary conditions. The prescribed displacements followed
a linear time evolution. The maximum value of the displacement was
Ud¼ 0.7mm (Fig. 9d).

FIGURE 8 Comparison between experimental (‘‘Experimental’’ in graphs)
and finite element analysis (‘‘FEA’’ in graphs) Arcan results for tensile-shear
loading (c¼ 45�) at a displacement rate of 0.5mm=min. (a) Load-displacement
diagram in the tangential direction, (b) load-displacement diagram in the
normal direction, (c) evolution of the shear stress distribution in the adhesive
for different steps (i, j, k, l) along half of the overlap, and (d) evolution of the
normal stress distribution in the adhesive for different steps (i, j, k, l) along
half of the overlap.

2-D Modeling of an Adhesive in an Assembly 251

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
5
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Figure 10f shows the comparison between the experimental and
numerical results in the load-displacement curves and underlines
the accuracy of the response of the proposed model for this quite com-
plex specimen. Figure 10 presents the evolution of the components of
the stresses, the components of the relative displacements, and the
plastic cumulated displacement in the adhesive with respect to the
segment [OB] (Fig. 9d) for different values of the prescribed displace-
ment presented in Figure 10f. The non-linear behavior first appears
close to the two ends of the bonded joint. Large stress redistribution
can be noted in the adhesive, especially for the normal stress. For a
complete plastified adhesive, a more constant stress distribution in
the adhesive is obtained. For this kind of joint, the peak values
reached by the normal stresses are on the same level as the tangential

FIGURE 9 Simple lap shear type specimen with thick substrates and beaks.
(a) Manufacturing of the specimen, (b) geometry of the substrates, (c) experi-
mental test, (d) 2D numerical model, and (e) geometry in the z-direction.
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FIGURE 10 Simple lap shear specimen with beaks and thick substrates:
evolution of different parameters along half of the adhesive joint (steps i, j,
k, l, m, and n). (a) Shear stress ts, (b) normal stress tn, (c) tangential displace-
ment, DT, (d) normal displacement, DN, (e) cumulated plastic displacement, p,
and (f) load-displacement diagram for experimental and numerical results.
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ones. Figures 10c and 10d underline the differences in terms of rela-
tive displacements between the normal and tangential directions (a
ratio of nearly ten is obtained). One can notice that for such simple
lap shear specimens, the stress distribution in the adhesive is quite
complex, even with thick substrates. Thus, for the analysis of such
tests, the influence of the peel stress and the normal displacement
component cannot be neglected.

These results illustrate the possibilities of the proposed strategy for
modeling the behavior of adhesive bonded assemblies associated with
low edges effects. In order to complete the numerical analysis, a
failure criterion has to be defined. Moreover, for such non-associated
models, one must analyze the stability conditions of the integration
law behavior scheme [32].

4. NON-ASSOCIATED ELASTO-VISCO-PLASTIC MODEL

4.1. Equations of the Elasto-Visco-Plastic Model

For the sake of simplicity, the same notations as those used for the
elasto-plastic model were used in order to describe the equations of
the non-associated elasto-visco-plastic model. The state Eqs. (5) and
(6), the yield surface (7), and the flow rule function (8) defined for
the elasto-plastic model were conserved [29]. Only the new evolution
laws have to be defined. The rate effects were described using the
Nouailhas type potential, X [15, 33]:

X ¼ K

aðnþ 1Þ exp a
q

K

D Enþ1
� �

; ð12Þ

where K, a, and n are characteristic parameters of the material and q
is defined by Eq. (8). Thus, one obtains the evolution law for the inelas-
tic displacement:

½ _uu�p ¼ @X
@T

¼ @X
@q

� @q
@T

: ð13Þ

4.2. Numerical Integration of the Constitutive Equations

For the numerical integration of the elasto-visco-plastic constitutive
equations, the strategy proposed by Corigliano and Ricci was followed
[34]. The integration scheme is based on a Runge-Kutta type algori-
thm. On a time step t2 [tn, tnþ1] knowing the variables for tn (½u�n,
Tn ,kn ) and for a given D½u� (D½u� ¼ ½u�nþ1 � ½u�n ), the problem is to inte-
grate the constitutive relations in order to determine the different
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variables at time tnþ1 (i.e., Tnþ1 and knþ1 or DT ¼ Tnþ1 � Tn and
Dk ¼ knþ1 � kn). A mid-point approximation governed by parameter
h2 [0,1] was introduced for the unknown inelastic displacement
½ _uu�pnþ1 and for the inelastic multiplier knþ1 . The corresponding rate
quantities ½u�pnþ1 and _kknþ1 were expanded in a Taylor series up to the
first order.

If f� 0 (elastic behavior over the time step)

Tnþ1 ¼ Keð½u�nþ1 � ½u�pnÞ
½u�pnþ1 ¼ ½u�pn
knþ1 ¼ kn:

8><
>: ð14Þ

If f> 0 (elasto-visco-plastic behavior over the time step)

Tnþ1 ¼ Keð½u�nþ1 � ½u�pnÞ
½u�pnþ1 ¼ ½u�pn þ Dsðð1� hÞ½ _uu�pn þ h½ _uu�pnþ1Þ

knþ1 ¼ kn þ Dsðð1� hÞ _kkn þ h _kknþ1Þ

½ _uu�pnþ1 ¼ ½ _uu�pn þ
@½ _uu�p

@T
jn

� �T

DTþ @½ _uu�p

@k
jn

� �T
Dk

_kknþ1 ¼ _kkn þ
@ _kk

@½ _uu�p

�����
n

 !T

D½ _uu�p:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð15Þ

Tnþ1 can be then explicitly written using Eq. (15). The details of the
calculations can be found in [34]. The parameter h was choosen equal
to 0.5 according to the stability of the integration method proposed by
Corrigliano and Ricci and numerical responses were computed with a
time step of Ds¼ 0.001 s to avoid numerical instability.

4.3. Results for Tensile-Shear Radial Monotonic Loadings

The inverse identification technique was done using, simultaneously, the
experimental results for three monotonic radial loadings (c¼ 0�, 45�, and
90�) and for four displacement rates of the crosshead of the tensile testing
machine (V1¼ 0.01mm=min, V2¼ 0.05mm=min, V3¼ 0.5mm=min, and
V4¼ 10mm=min). Table 2 gives the obtained values of material para-
meters of the non-associated elasto-visco-plastic model.

Figure 11 presents comparisons between experimental data
(denoted by ‘‘Experimental’’) and results of finite element simulations
(denoted by ‘‘FEA’’) using the adhesive parameters obtained with the
inverse identification. The load-displacement curves obtained with
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FIGURE 11 Comparison between experimental (‘‘Experimental’’ in graphs)
and finite element analysis (‘‘FEA’’ in graphs) load-displacement Arcan curves
for different radial monotonic loadings and for different displacement rates
(V1¼ 0.01mm=min, V2¼ 0.05mm=min, V3¼ 0.5mm=min, and V4¼ 10mm=
min). (a) Behavior in the tangential direction for pure shear tests [15], (b)
behavior in the normal direction for pure tensile tests, (c) behavior in the
tangential direction for tensile-shear tests (c¼ 45�), and (d) behavior in the
normal direction for tension-shear tests (c¼ 45�).

TABLE 2 Material Parameters of the Adhesive
Non-Associated Elasto-Visco-Plastic Model

Parameters Values

kn (N=mm3) 5575
ks (N=mm3) 1015
aþ 2.3
a� 4
c 3.8
Ri (MPa) 20
A (N=mm3) 13
n 1
K 2050
a 1
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the proposed model are in good agreement with the experimental ones,
taking into account the large ratio between the inelastic displacements
in the normal and tangential directions, for a large range of radial
monotonic loadings.

Figure 12 presents the results for the tensile-shear test at c¼ 45�

and for a displacement rate of the crosshead of V1¼ 0.01mm=min.
Comparisons are shown in terms of load-displacement curves between
experimental and numerical results. Moreover, the evolutions of the
shear and peel stresses along half of the adhesive (segment [OA],
Fig. 6) are presented for increasing stages of loading. The results pre-
sented in Fig. 8 for a displacement rate of V3¼ 0.5mm=min and on
Fig. 12 for a displacement rate of V1¼ 0.01mm=min underline the
influence of the loading rate on the stress distribution in the adhesive.

FIGURE 12 Comparison between experimental (‘‘Experimental’’ in graphs)
and finite element analysis (‘‘FEA’’ in graphs) Arcan results for tensile-shear
loading (c¼ 45�) at a displacement rate of 0.01mm=min. (a) Load-displacement
diagram in the tangential direction, (b) load-displacement diagram in the
normal direction, (c) shear stress distribution in the middle of the adhesive
for different steps (i, j, k, and l) along half of the overlap (x), and (d) normal
stress distribution in the middle of the adhesive for different steps (i, j, k,
and l) along half of the overlap (x).
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4.4. Validation Example: A Simple Lap Shear
Specimen with Beaks

The simple lap shear type specimen with thick substrates and beaks
presented in Fig. 9 was used to analyze numerically the influence of
the loading rate on the stress distribution in the adhesive. Figures
13b–d present, for different time steps (i, j, and k) defined in Fig. 13a,
the stress distribution in the normal and tangential directions along
half of the overlap [OB] (Fig. 9d). Results show the influence of the
loading rate stress distribution in the adhesive and, therefore, on
the global response of the structure. Figure 13 also shows the possibi-
lities of the proposed strategy for modeling the behavior of adhesive
bonded assemblies associated with low edges effects.

FIGURE 13 Finite element analysis for a simple lap shear specimen with
beaks at three displacement rates V1¼ 0.01mm=min, V3¼ 0.5mm=min,
V4¼ 10mm=min for different steps of displacement (i, j, and k). (a) Load-
displacement curves in the tangential direction, (b, c, and d) evolution of the
shear, ts, and the tensile, tn, stresses for different steps (i, j, and k) along half
of the overlap.

258 R. Créac’hcadec and J. Y. Cognard

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
5
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



5. CONCLUSIONS

The optimization of adhesively bonded assemblies, which are widely
used in different industries, requires accurate numerical models. How-
ever, the experimental and numerical analyses of the mechanical beha-
vior of bonded joints can be particularly difficult due to the edge effects.
This paper presents a contribution to the development of an accurate
numerical model for an adhesive in an assembly, starting from a large
database of experimental results in the case of radial monotonic load-
ings. The experimental results were obtainedwith amodified Arcan-type
fixture using specific geometries which strongly limit the influence of
edge effects. A non-associated 2D model was proposed to represent accu-
rately the experimental observations and, in particular, the much larger
deformation in shear than in peel. The responses (load-displacement
curves) of the proposed model, using few material parameters, are in
good agreement with the experimental data in the case of a wide range
of deformation rates under different tensile-shear loading tests.

The numerical implementation of the proposed model was done
using joint-type elements (or interface elements) which allow the limi-
tation of the numerical cost in the case of bonded structures with low
edge effects. Comparisons between numerical and experimental
results, in the case of a bonded specimen characterized with a quite
complex stress distribution, illustrate the possibilities of the proposed
strategy for modeling the behavior of adhesive bonded assemblies.

This work will be further developed in order to analyze the stability
conditions for such non-associated models and to study more efficient
numerical integration techniques in order reduce the numerical costs.
Moreover, the model needs to be extended to describe accurately the
adhesive behavior under cyclic- and relaxation-type loadings. It is also
important to notice that the proposed model can be adapted to solid
finite elements, using finite strain formulations, for analyzing the
response of industrial-type structures with edge effects.
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